TTIC 31150/CMSC 31150 Mathematical Toolkit (Fall 2024)

Avrim Blum

Lecture 13: Randomized Routing, Randomized Complexity Classes

Recap

- Basic tail inequalities: Markov's inequality and Chebyshev's inequality. Properties of variance: $Var(\sum_i X_i) = \sum_i Var(X_i)$ if pairwise independent. Threshold phenomena in random graphs.
- Chernoff-Hoeffding bounds: stronger bounds on large deviations using full mutual independence. For X a sum of independent Bernoulli R.V.s, we get:

$$\mathbb{P}[X \ge (1+\delta)\mu] \le \left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^{\mu}$$
$$\mathbb{P}[X \le (1-\delta)\mu] \le \left(\frac{e^{-\delta}}{(1-\delta)^{1-\delta}}\right)^{\mu}$$

- For $\delta \in [0,1]$ get:
 - $\triangleright \mathbb{P}[X \ge (1+\delta)\mu] \le e^{-\delta^2 \mu/3}$
 - $\geq \mathbb{P}[X \le (1 \delta)\mu] \le e^{-\delta^2 \mu/2}$
- Whp, poly(n) random vectors in $\{-1,1\}^n$ will all be nearly orthogonal. If toss n balls into n bins, whp no bin has $\gg \frac{\log n}{\log \log n}$ balls in it.

A small extension of Chernoff-Hoeffding bounds

- Suppose $X = X_1 + \cdots + X_n$ is a sum of independent Bernoulli (p_i) R.V.'s with $\mu = \mathbb{E}[X]$.
- Suppose we have an upper-bound *B* on μ (i.e., $\mu \leq B$).
- Then we can say: $\mathbb{P}[X \ge (1 + \delta)B] \le e^{-\delta^2 B/3}$. [I.e., we can use B in exponent]

Analysis:

• Define $p'_1, \ldots, p'_n \in [0,1]$ such that $p'_i \ge p_i$ and $\sum_i p'_i = B$.

We can do this so long as $B \le n$. If B > n then the bound holds trivially.

- Define R.V. X'_i : if $X_i = 1$ then $X'_i = 1$; else if $X_i = 0$ then $X'_i = 1$ with prob $\frac{p'_i p_i}{1 p_i}$.
- The X'_i are independent Bernoulli (p'_i) R.V.s, so $\mathbb{P}[\sum_i X'_i \ge (1+\delta)B] \le e^{-\delta^2 B/3}$.
- But notice that $\sum_i X'_i \ge \sum_i X_i$ always. So, our desired inequality holds too.

Low-congestion routing

Given a directed graph G and a collection of pairs of vertices $\{(s_i, t_i)\}$, we would like to route paths from s_i to t_i to minimize the maximum congestion (the number of paths using any given edge).

This problem is NP-hard. Can we get a good approximation?

- First solve the problem fractionally (also called "multi-commodity flow"):
 - For each (directed) edge (u, v) and each commodity *i*, have variable $x_{i,(u,v)}$.
 - ► For each *i* have constraints: $\sum_{v} x_{i,(s_i,v)} = 1$, $\sum_{u} x_{i,(u,t_i)} = 1$, and flow-in = flowout for all $v \notin \{s_i, t_i\}$: $\sum_{u} x_{i,(u,v)} = \sum_{u'} x_{i,(v,u')}$. Also, non-negativity.
 - > Then for each edge (u, v) have constraint $\sum_i x_{i,(u,v)} \leq C$ and minimize C.
- Note that if *opt* is the value of the optimal solution to the original problem, then $C \le opt$, because this is a relaxation. But now we have to convert our flow into a collection of s_i - t_i paths.

- First solve the problem fractionally (also called "multi-commodity flow"):
 - For each (directed) edge (u, v) and each commodity *i*, have variable $x_{i,(u,v)}$.
 - ► For each *i* have constraints: $\sum_{v} x_{i,(s_i,v)} = 1$, $\sum_{u} x_{i,(u,t_i)} = 1$, and flow-in = flowout for all $v \notin \{s_i, t_i\}$: $\sum_{u} x_{i,(u,v)} = \sum_{u'} x_{i,(v,u')}$. Also, non-negativity.
 - > Then for each edge (u, v) have constraint $\sum_i x_{i,(u,v)} \leq C$ and minimize C.
- Next, for each *i*, we view the values $x_{i,(u,v)}$ as probabilities and select a path from s_i to t_i such that for each (u, v), $\mathbb{P}[(u, v)$ is selected] = $x_{i,(u,v)}$.
 - Claim: we can do this by starting from s_i and choosing an outgoing edge with probability proportional to the flow of commodity i on that edge, continuing until t_i is reached.

- First solve the problem fractionally (also called "multi-commodity flow"):
 - For each (directed) edge (u, v) and each commodity *i*, have variable $x_{i,(u,v)}$.
 - ► For each *i* have constraints: $\sum_{v} x_{i,(s_i,v)} = 1$, $\sum_{u} x_{i,(u,t_i)} = 1$, and flow-in = flowout for all $v \notin \{s_i, t_i\}$: $\sum_{u} x_{i,(u,v)} = \sum_{u'} x_{i,(v,u')}$. Also, non-negativity.
 - > Then for each edge (u, v) have constraint $\sum_i x_{i,(u,v)} \leq C$ and minimize C.
- Next, for each *i*, we view the values $x_{i,(u,v)}$ as probabilities and select a path from s_i to t_i such that for each (u, v), $\mathbb{P}[(u, v)$ is selected] = $x_{i,(u,v)}$.
 - Proof: Consider the DAG of flows of commodity i. Argue by induction on this DAG, using the flow-in = flow out constraint.

- First solve the problem fractionally (also called "multi-commodity flow"):
- Next, for each *i*, we view the values $x_{i,(u,v)}$ as probabilities and select a path from s_i to t_i such that for each (u, v), $\mathbb{P}[(u, v)$ is selected] = $x_{i,(u,v)}$.

Claim: If $opt \gg \log n$ then whp this will find a solution of max congestion $\leq (1 + o(1)) \cdot opt$. For any value of opt, whp this will find a solution of congestion $O\left(\frac{\log n}{\log \log n} \cdot opt\right)$.

Proof:

- Let $X_{i,(u,v)}$ be an indicator R.V. for the event that we use edge (u, v) in the s_i - t_i path.
- $\mathbb{E}[X_{i,(u,v)}] = x_{i,(u,v)}$, and $X_{1,(u,v)}$, $X_{2,(u,v)}$, ... are independent for any given (u, v).
- So, we can apply Chernoff-Hoeffding to $X_{(u,v)} = \sum_i X_{i,(u,v)}$, where $\mathbb{E}[X_{(u,v)}] \leq opt$.

• $\mathbb{P}[X_{(u,v)} \ge (1+\delta)opt] \le e^{-\delta^2 opt/3}$. If $opt \gg \log n$, the RHS is $o(1/n^2)$ for any constant $\delta > 0$, so the chance there exists an edge with greater congestion is o(1).

Claim: If $opt \gg \log n$ then whp this will find a solution of max congestion $\leq (1 + o(1)) \cdot opt$. For any value of opt, whp this will find a solution of congestion $O\left(\frac{\log n}{\log \log n} \cdot opt\right)$.

Proof:

- Let $X_{i,(u,v)}$ be an indicator R.V. for the event that we use edge (u, v) in the s_i - t_i path.
- $\mathbb{E}[X_{i,(u,v)}] = x_{i,(u,v)}$, and $X_{1,(u,v)}, X_{2,(u,v)}$, ... are independent for any given (u, v).
- So, we can apply Chernoff-Hoeffding to $X_{(u,v)} = \sum_i X_{i,(u,v)}$, where $\mathbb{E}[X_{(u,v)}] \leq opt$.

• $\mathbb{P}[X_{(u,v)} \ge (1+\delta)opt] \le e^{-\delta^2 opt/3}$. If $opt \gg \log n$, the RHS is $o(1/n^2)$ for any constant $\delta > 0$, so the chance there exists an edge with greater congestion is o(1).

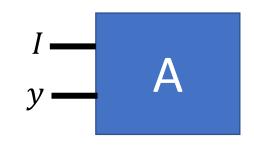
Claim: If $opt \gg \log n$ then whp this will find a solution of max congestion $\leq (1 + o(1)) \cdot opt$. For any value of opt, whp this will find a solution of congestion $O\left(\frac{\log n}{\log \log n} \cdot opt\right)$.

Proof:

• For any value of *opt*, can use $\mathbb{P}[X_{(u,v)} \ge k \text{ opt}] < \left(\frac{e^{k-1}}{k^k}\right)^{opt} \le \frac{e^{k-1}}{k^k}$. Set $k = \frac{3 \ln n}{\ln \ln n}$ and get $o(1/n^2)$ as desired.

- Introduce **RP** and **BPP**, which are randomized versions of complexity class **P**.
- Formally, considering decision (YES/NO) problems. E.g., "does the given graph G have a perfect matching?"
- Definition: An algorithm runs in polynomial time if for some constant c, its running time on instances of size n is O(n^c).
- Definition: P is the class of decision problems solvable by deterministic polynomial-time algorithms.

To define randomized complexity classes, will consider algorithms A that take in *two* inputs: an instance I and an auxiliary input y, which is a bit string of length polynomial in the size of I. Think of y as the random bits used by A.



- Definition: A problem Q is in RP if there exists a polynomial-time algorithm A(I, y) and a polynomial r such that:
 - ➢ If *I* is a YES-instance then P_{y∈{0,1}^{r(|I|)}} [A(I, y) = YES] ≥ ¹/₂.
 ➢ If *I* is a NO-instance then P_{y∈{0,1}^{r(|I|)}} [A(I, y) = YES] = 0.

RP corresponds to problems solvable by randomized algorithms with 1-sided error.

E.g., we showed Perfect Matching \in **RP** because we gave an algorithm such that if *G* has a perfect matching, then the algorithm says YES with probability $\geq \frac{1}{2}$ (because the Tutte polynomial is not identically 0), and if *G* does not have a perfect matching, then the algorithm is guaranteed to say NO.

 Definition: A problem Q is in BPP if there exists a polynomial-time algorithm A(I, y) and a polynomial r such that:

➢ If *I* is a YES-instance then P_{y∈{0,1}^{r(|I|)}} [A(I, y) = YES] ≥ ³/₄.
 ➢ If *I* is a NO-instance then P_{y∈{0,1}^{r(|I|)}} [A(I, y) = YES] ≤ ¹/₄.

BPP corresponds to randomized algorithms with 2-sided error.

It is believed that **P**=**RP**=**BPP**, but there is no deterministic polynomial-time algorithm known for the polynomial identity-testing problem.

One more interesting complexity class to mention, **P/poly**, which is the class of problems solvable in "non-uniform polynomial time".

• Definition: A problem Q is in **P/poly** if there exists a polynomial-time algorithm A(I, y)and a polynomial r such that for every n there exists a string $y_n \in \{0,1\}^{r(n)}$ such that $A(I, y_{|I|})$ is always correct. There could be 2^n inputs of size n, but

Think of y_n as an "advice" string for inputs of size n.

There could be 2^n inputs of size n, but y_n has size only r(n), so it can't just encode all the answers.

Claim: $RP \subseteq P/poly$. (You will show $BPP \subseteq P/poly$ on your homework).

Proof: Suppose $Q \in \mathbf{RP}$. So, there exists algo A and polynomial r satisfying **RP** definition.

- Define A' that on instance I of size n uses auxiliary input y_n of length (n + 1)r(n) to perform n + 1 runs of A and output YES if any run gives YES, else NO.
- $\mathbb{P}_{y_n}[A'(I, y_n) \text{ fails}] \leq 1/2^{n+1}.$
- $\mathbb{P}_{y_n}[\text{exists } I \text{ of size } n \text{ s.t. } A'(I, y_n) \text{ fails}] \leq \frac{2^n}{2^{n+1}} = \frac{1}{2}$. So, a good y_n must exist.