
TTIC 31150/CMSC 31150
Mathematical Toolkit (Fall 2024)

Avrim Blum

Lecture 13: Randomized Routing, Randomized
Complexity Classes

1

Recap
• Basic tail inequalities: Markov’s inequality and Chebyshev’s inequality. Properties of

variance: 𝑉𝑎𝑟(σ𝑖 𝑋𝑖) = σ𝑖 𝑉𝑎𝑟 𝑋𝑖 if pairwise independent. Threshold phenomena
in random graphs.

• Chernoff-Hoeffding bounds: stronger bounds on large deviations using full mutual
independence. For 𝑋 a sum of independent Bernoulli R.V.s, we get:

➢ ℙ 𝑋 ≥ 1 + 𝛿 𝜇 ≤
𝑒𝛿

1+𝛿 1+𝛿

𝜇

➢ ℙ 𝑋 ≤ 1 − 𝛿 𝜇 ≤
𝑒−𝛿

1−𝛿 1−𝛿

𝜇

➢ ℙ 𝑋 ≥ 1 + 𝛿 𝜇 ≤ 𝑒−𝛿2𝜇/3

➢ ℙ 𝑋 ≤ 1 − 𝛿 𝜇 ≤ 𝑒−𝛿2𝜇/2

• For 𝛿 ∈ [0,1] get:

• Whp, poly(n) random vectors in −1,1 𝑛 will all be nearly orthogonal. If toss 𝑛 balls

into 𝑛 bins, whp no bin has ≫
log 𝑛

log log 𝑛
 balls in it.

A small extension of Chernoff-Hoeffding bounds

• Suppose 𝑋 = 𝑋1 + ⋯ + 𝑋𝑛 is a sum of independent Bernoulli(𝑝𝑖) R.V.’s with 𝜇 = 𝔼 𝑋 .

• Suppose we have an upper-bound 𝐵 on 𝜇 (i.e., 𝜇 ≤ 𝐵).

• Then we can say: ℙ 𝑋 ≥ 1 + 𝛿 𝐵 ≤ 𝑒−𝛿2𝐵/3. [I.e., we can use 𝐵 in exponent]

Analysis:

• Define 𝑝1
′ , … , 𝑝𝑛

′ ∈ [0,1] such that 𝑝𝑖
′ ≥ 𝑝𝑖 and σ𝑖 𝑝𝑖

′ = 𝐵.

We can do this so long
as 𝐵 ≤ 𝑛. If 𝐵 > 𝑛 then
the bound holds trivially.

• Define R.V. 𝑋𝑖
′: if 𝑋𝑖 = 1 then 𝑋𝑖

′ = 1; else if 𝑋𝑖 = 0 then 𝑋𝑖
′ = 1 with prob

𝑝𝑖
′−𝑝𝑖

1−𝑝𝑖
 .

• The 𝑋𝑖
′ are independent Bernoulli(𝑝𝑖

′) R.V.s, so ℙ σ𝑖 𝑋𝑖
′ ≥ 1 + 𝛿 𝐵 ≤ 𝑒−𝛿2𝐵/3.

• But notice that σ𝑖 𝑋𝑖
′ ≥ σ𝑖 𝑋𝑖 always. So, our desired inequality holds too.

Low-congestion routing

Given a directed graph 𝐺 and a collection of pairs of vertices 𝑠𝑖 , 𝑡𝑖 , we would like to
route paths from 𝑠𝑖 to 𝑡𝑖 to minimize the maximum congestion (the number of paths
using any given edge).

This problem is NP-hard. Can we get a good approximation?

Raghavan & Thompson idea

• First solve the problem fractionally (also called “multi-commodity flow”):

➢ For each (directed) edge (𝑢, 𝑣) and each commodity 𝑖, have variable 𝑥𝑖, 𝑢,𝑣 .

➢ For each 𝑖 have constraints: σ𝑣 𝑥𝑖, 𝑠𝑖,𝑣 = 1, σ𝑢 𝑥𝑖, 𝑢,𝑡𝑖
= 1, and flow-in = flow-

out for all 𝑣 ∉ {𝑠𝑖 , 𝑡𝑖}: σ𝑢 𝑥𝑖, 𝑢,𝑣 = σ𝑢′ 𝑥𝑖, 𝑣,𝑢′ . Also, non-negativity.

➢ Then for each edge (𝑢, 𝑣) have constraint σ𝑖 𝑥𝑖, 𝑢,𝑣 ≤ 𝐶 and minimize 𝐶.

• Note that if 𝑜𝑝𝑡 is the value of the optimal solution to the original problem, then
𝐶 ≤ 𝑜𝑝𝑡, because this is a relaxation. But now we have to convert our flow into a
collection of 𝑠𝑖-𝑡𝑖 paths.

Raghavan & Thompson idea

• First solve the problem fractionally (also called “multi-commodity flow”):

➢ For each (directed) edge (𝑢, 𝑣) and each commodity 𝑖, have variable 𝑥𝑖, 𝑢,𝑣 .

➢ For each 𝑖 have constraints: σ𝑣 𝑥𝑖, 𝑠𝑖,𝑣 = 1, σ𝑢 𝑥𝑖, 𝑢,𝑡𝑖
= 1, and flow-in = flow-

out for all 𝑣 ∉ {𝑠𝑖 , 𝑡𝑖}: σ𝑢 𝑥𝑖, 𝑢,𝑣 = σ𝑢′ 𝑥𝑖, 𝑣,𝑢′ . Also, non-negativity.

➢ Then for each edge (𝑢, 𝑣) have constraint σ𝑖 𝑥𝑖, 𝑢,𝑣 ≤ 𝐶 and minimize 𝐶.

• Next, for each 𝑖, we view the values 𝑥𝑖, 𝑢,𝑣 as probabilities and select a path from 𝑠𝑖 to
𝑡𝑖 such that for each (𝑢, 𝑣), ℙ[𝑢, 𝑣 is selected] = 𝑥𝑖, 𝑢,𝑣 .

➢ Claim: we can do this by starting from 𝑠𝑖 and choosing an outgoing edge with
probability proportional to the flow of commodity 𝑖 on that edge, continuing
until 𝑡𝑖 is reached.

Raghavan & Thompson idea

• First solve the problem fractionally (also called “multi-commodity flow”):

➢ For each (directed) edge (𝑢, 𝑣) and each commodity 𝑖, have variable 𝑥𝑖, 𝑢,𝑣 .

➢ For each 𝑖 have constraints: σ𝑣 𝑥𝑖, 𝑠𝑖,𝑣 = 1, σ𝑢 𝑥𝑖, 𝑢,𝑡𝑖
= 1, and flow-in = flow-

out for all 𝑣 ∉ {𝑠𝑖 , 𝑡𝑖}: σ𝑢 𝑥𝑖, 𝑢,𝑣 = σ𝑢′ 𝑥𝑖, 𝑣,𝑢′ . Also, non-negativity.

➢ Then for each edge (𝑢, 𝑣) have constraint σ𝑖 𝑥𝑖, 𝑢,𝑣 ≤ 𝐶 and minimize 𝐶.

• Next, for each 𝑖, we view the values 𝑥𝑖, 𝑢,𝑣 as probabilities and select a path from 𝑠𝑖 to
𝑡𝑖 such that for each (𝑢, 𝑣), ℙ[𝑢, 𝑣 is selected] = 𝑥𝑖, 𝑢,𝑣 .

➢ Proof: Consider the DAG of flows of commodity 𝑖. Argue by induction on this
DAG, using the flow-in = flow out constraint.

Raghavan & Thompson idea

• First solve the problem fractionally (also called “multi-commodity flow”):

• Next, for each 𝑖, we view the values 𝑥𝑖, 𝑢,𝑣 as probabilities and select a path from 𝑠𝑖 to
𝑡𝑖 such that for each (𝑢, 𝑣), ℙ[𝑢, 𝑣 is selected] = 𝑥𝑖, 𝑢,𝑣 .

Claim: If 𝑜𝑝𝑡 ≫ log 𝑛 then whp this will find a solution of max congestion ≤ 1 + 𝑜 1 ⋅ 𝑜𝑝𝑡.

For any value of 𝑜𝑝𝑡, whp this will find a solution of congestion 𝑂
log 𝑛

log log 𝑛
⋅ 𝑜𝑝𝑡 .

Proof:

• Let 𝑋𝑖, 𝑢,𝑣 be an indicator R.V. for the event that we use edge (𝑢, 𝑣) in the 𝑠𝑖-𝑡𝑖 path.

• 𝔼[𝑋𝑖, 𝑢,𝑣] = 𝑥𝑖, 𝑢,𝑣 , and 𝑋1, 𝑢,𝑣 , 𝑋2, 𝑢,𝑣 , … are independent for any given (𝑢, 𝑣).

• So, we can apply Chernoff-Hoeffding to 𝑋 𝑢,𝑣 = σ𝑖 𝑋𝑖, 𝑢,𝑣 , where 𝔼 𝑋 𝑢,𝑣 ≤ 𝑜𝑝𝑡.

Raghavan & Thompson idea
• ℙ 𝑋 𝑢,𝑣 ≥ 1 + 𝛿 𝑜𝑝𝑡 ≤ 𝑒−𝛿2 𝑜𝑝𝑡/3. If 𝑜𝑝𝑡 ≫ log 𝑛, the RHS is 𝑜(1/𝑛2) for any

constant 𝛿 > 0, so the chance there exists an edge with greater congestion is 𝑜(1).

Claim: If 𝑜𝑝𝑡 ≫ log 𝑛 then whp this will find a solution of max congestion ≤ 1 + 𝑜 1 ⋅ 𝑜𝑝𝑡.

For any value of 𝑜𝑝𝑡, whp this will find a solution of congestion 𝑂
log 𝑛

log log 𝑛
⋅ 𝑜𝑝𝑡 .

Proof:

• Let 𝑋𝑖, 𝑢,𝑣 be an indicator R.V. for the event that we use edge (𝑢, 𝑣) in the 𝑠𝑖-𝑡𝑖 path.

• 𝔼[𝑋𝑖, 𝑢,𝑣] = 𝑥𝑖, 𝑢,𝑣 , and 𝑋1, 𝑢,𝑣 , 𝑋2, 𝑢,𝑣 , … are independent for any given (𝑢, 𝑣).

• So, we can apply Chernoff-Hoeffding to 𝑋 𝑢,𝑣 = σ𝑖 𝑋𝑖, 𝑢,𝑣 , where 𝔼 𝑋 𝑢,𝑣 ≤ 𝑜𝑝𝑡.

Raghavan & Thompson idea
• ℙ 𝑋 𝑢,𝑣 ≥ 1 + 𝛿 𝑜𝑝𝑡 ≤ 𝑒−𝛿2 𝑜𝑝𝑡/3. If 𝑜𝑝𝑡 ≫ log 𝑛, the RHS is 𝑜(1/𝑛2) for any

constant 𝛿 > 0, so the chance there exists an edge with greater congestion is 𝑜(1).

Claim: If 𝑜𝑝𝑡 ≫ log 𝑛 then whp this will find a solution of max congestion ≤ 1 + 𝑜 1 ⋅ 𝑜𝑝𝑡.

For any value of 𝑜𝑝𝑡, whp this will find a solution of congestion 𝑂
log 𝑛

log log 𝑛
⋅ 𝑜𝑝𝑡 .

Proof:

• For any value of 𝑜𝑝𝑡, can use ℙ 𝑋 𝑢,𝑣 ≥ 𝑘 𝑜𝑝𝑡 <
𝑒𝑘−1

𝑘𝑘

𝑜𝑝𝑡

≤
𝑒𝑘−1

𝑘𝑘 . Set 𝑘 =
3 ln 𝑛

ln ln 𝑛
 and

get 𝑜(1/𝑛2) as desired.

Randomized Complexity Classes

• Introduce RP and BPP, which are randomized versions of complexity class P.

• Formally, considering decision (YES/NO) problems. E.g., “does the given graph G have a
perfect matching?”

• Definition: An algorithm runs in polynomial time if for some constant 𝑐, its running time
on instances of size 𝑛 is 𝑂 𝑛𝑐 .

• Definition: P is the class of decision problems solvable by deterministic polynomial-time
algorithms.

To define randomized complexity classes, will consider algorithms
𝐴 that take in two inputs: an instance 𝐼 and an auxiliary input 𝑦,

which is a bit string of length polynomial in the size of 𝐼. Think of
𝑦 as the random bits used by 𝐴.

A
𝐼

𝑦

Randomized Complexity Classes

• Definition: A problem 𝑄 is in RP if there exists a polynomial-time algorithm 𝐴(𝐼, 𝑦) and
a polynomial 𝑟 such that:

➢ If 𝐼 is a YES-instance then ℙ𝑦∈ 0,1 𝑟 𝐼 𝐴 𝐼, 𝑦 = 𝑌𝐸𝑆 ≥
1

2
.

➢ If 𝐼 is a NO-instance then ℙ𝑦∈ 0,1 𝑟 𝐼 𝐴 𝐼, 𝑦 = 𝑌𝐸𝑆 = 0.

RP corresponds to problems solvable by randomized algorithms with 1-sided error.

E.g., we showed Perfect Matching ∈ RP because we gave an algorithm such that if 𝐺
has a perfect matching, then the algorithm says YES with probability ≥ ½ (because the
Tutte polynomial is not identically 0), and if 𝐺 does not have a perfect matching, then
the algorithm is guaranteed to say NO.

Randomized Complexity Classes

• Definition: A problem 𝑄 is in BPP if there exists a polynomial-time algorithm 𝐴(𝐼, 𝑦) and
a polynomial 𝑟 such that:

➢ If 𝐼 is a YES-instance then ℙ𝑦∈ 0,1 𝑟 𝐼 𝐴 𝐼, 𝑦 = 𝑌𝐸𝑆 ≥
3

4
.

➢ If 𝐼 is a NO-instance then ℙ𝑦∈ 0,1 𝑟 𝐼 𝐴 𝐼, 𝑦 = 𝑌𝐸𝑆 ≤
1

4
.

BPP corresponds to randomized algorithms with 2-sided error.

It is believed that P=RP=BPP, but there is no deterministic polynomial-time algorithm
known for the polynomial identity-testing problem.

One more interesting complexity class to mention, P/poly, which is the class of
problems solvable in “non-uniform polynomial time”.

Randomized Complexity Classes

• Definition: A problem 𝑄 is in P/poly if there exists a polynomial-time algorithm 𝐴(𝐼, 𝑦)
and a polynomial 𝑟 such that for every 𝑛 there exists a string 𝑦𝑛 ∈ 0,1 𝑟 𝑛 such that
𝐴 𝐼, 𝑦 𝐼 is always correct.

Think of 𝑦𝑛 as an “advice” string for inputs of size 𝑛.

Claim: RP ⊆ P/poly. (You will show BPP ⊆ P/poly on your homework).

Proof: Suppose 𝑄 ∈ RP. So, there exists algo 𝐴 and polynomial 𝑟 satisfying RP definition.

• Define 𝐴′ that on instance 𝐼 of size 𝑛 uses auxiliary input 𝑦𝑛 of length 𝑛 + 1 𝑟(𝑛) to
perform 𝑛 + 1 runs of 𝐴 and output YES if any run gives YES, else NO.

• ℙ𝑦𝑛
[𝐴′ 𝐼, 𝑦𝑛 fails] ≤ 1/2𝑛+1.

• ℙ𝑦𝑛
[exists 𝐼 of size 𝑛 s.t. 𝐴′ 𝐼, 𝑦𝑛 fails] ≤

2𝑛

2𝑛+1 =
1

2
. So, a good 𝑦𝑛 must exist.

There could be 2𝑛 inputs of size 𝑛, but
𝑦𝑛 has size only 𝑟 𝑛 , so it can’t just
encode all the answers.

	Slide 1: TTIC 31150/CMSC 31150 Mathematical Toolkit (Fall 2024)
	Slide 2: Recap
	Slide 3: A small extension of Chernoff-Hoeffding bounds
	Slide 4: Low-congestion routing
	Slide 5: Raghavan & Thompson idea
	Slide 6: Raghavan & Thompson idea
	Slide 7: Raghavan & Thompson idea
	Slide 8: Raghavan & Thompson idea
	Slide 9: Raghavan & Thompson idea
	Slide 10: Raghavan & Thompson idea
	Slide 11: Randomized Complexity Classes
	Slide 12: Randomized Complexity Classes
	Slide 13: Randomized Complexity Classes
	Slide 14: Randomized Complexity Classes

