TTIC 31150/CMSC 31150
Mathematical Toolkit (Fall 2024)

Avrim Blum

Lecture 13: Randomized Routing, Randomized
Complexity Classes

Recap

 Basic tail inequalities: Markov’s inequality and Chebyshev’s inequality. Properties of
variance: Var(}; X;) = X; Var(X;) if pairwise independent. Threshold phenomena
in random graphs.

* Chernoff-Hoeffding bounds: stronger bounds on large deviations using full mutual
independence. For X a sum of independent Bernoulli R.V.s, we get:

>P[X2(1+6)u]§(al)M

(1+6)1+9

»PX<(1-8)ul < ((1_8(;;_5)

* For § € [0,1] get:
> PX > (1+8)u] <e 013
> PIX < (1-08)u] <e w2

* Whp, poly(n) random vectors in {—1,1}" will all be nearly orthogonal. If toss n balls

logn ..
5 pallsin it.
loglogn

into n bins, whp no bin has >

A small extension of Chernoff-Hoeffding bounds

 Suppose X = X; + -+ X,, is a sum of independent Bernoulli(p;) RV.s with u = E[X].

e Suppose we have an upper-bound B on u (i.e., u < B).

- Then we can say: P[X > (1 + 8)B] < e~%°B/3. [l.e., we can use B in exponent]

Analysis: We can do this so long
. , , , , as B <n.Ilf B> nthen
* Define p1, ..., pn, € [0,1] such that p; = p; and }; p; = B. the bound holds trivially.

* Define RV. X;: if X; = 1then X] = 1; else if X; = 0 then X; = 1 with prob pli__:_i .

» The X/ are independent Bernoulli(p}) R\.s, so P[X; X! = (1 + §)B] < e 9°8/3,

* But notice that }}; X; = Y; X; always. So, our desired inequality holds too.

Low-congestion routing

Given a directed graph G and a collection of pairs of vertices {(s;, t;)}, we would like to

route paths from s; to t; to minimize the maximum congestion (the number of paths
using any given edge).

This problem is NP-hard. Can we get a good approximation?

Raghavan & Thompson idea

* First solve the problem fractionally (also called “multi-commodity flow”):
» For each (directed) edge (u, v) and each commodity i, have variable x; ¢,).

> For each i have constraints: ., X; (s,») = 1, Xy Xi (u,t;) = 1, and flow-in = flow-
out forallv & {s;, t;}: Xy Xi (up) = 2y Xi(vu')- Also, non-negativity.

> Then for each edge (u, v) have constraint },; x; (, ;) < C and minimize C.

* Note that if opt is the value of the optimal solution to the original problem, then
C < opt, because this is a relaxation. But now we have to convert our flow into a
collection of s;-t; paths.

Raghavan & Thompson idea

* First solve the problem fractionally (also called “multi-commodity flow”):
» For each (directed) edge (u, v) and each commodity i, have variable x; ¢,).

> For each i have constraints: ., X; (s,») = 1, Xy Xi (u,t;) = 1, and flow-in = flow-
out forallv & {s;, t;}: Xy Xi (up) = 2y Xi(vu')- Also, non-negativity.

> Then for each edge (u, v) have constraint },; x; (, ;) < C and minimize C.

* Next, for each i, we view the values x; (,, ;,) as probabilities and select a path from s; to
t; such that for each (u, v), P[(u, v) is selected] = x; ¢y, 1)

» Claim: we can do this by starting from s; and choosing an outgoing edge with
probability proportional to the flow of commodity i on that edge, continuing
until t; is reached.

Raghavan & Thompson idea

* First solve the problem fractionally (also called “multi-commodity flow”):
» For each (directed) edge (u, v) and each commodity i, have variable x; ¢,).

> For each i have constraints: ., X; (s,») = 1, Xy Xi (u,t;) = 1, and flow-in = flow-
out forallv & {s;, t;}: Xy Xi (up) = 2y Xi(vu') Also, non-negativity.

> Then for each edge (u, v) have constraint },; x; (, ;) < C and minimize C.

* Next, for each i, we view the values x; (,, ;,) as probabilities and select a path from s; to
t; such that for each (u, v), P[(u, v) is selected] = x; ¢y, 1)

» Proof: Consider the DAG of flows of commodity i. Argue by induction on this
DAG, using the flow-in = flow out constraint.

Raghavan & Thompson idea

* First solve the problem fractionally (also called “multi-commodity flow”):

* Next, for each i, we view the values x; (, ;,) as probabilities and select a path from s; to
t; such that for each (u,v), P[(u,v) is selected] = x; (1)

Claim: If opt > logn then whp this will find a solution of max congestion < (1 + 0(1)) - opt.
logn
- opt).

For any value of opt, whp this will find a solution of congestion O (log log 1

Proof:

* Let X; (1) be an indicator R.\V. for the event that we use edge (u, v) in the s;-t; path.

* E[X; ww)] = xi cuv), and X1 1), X2 (up), --- are independent for any given (u, v).

* So, we can apply Chernoff-Hoeffding to X, ,,y = X; X (uv), Where IE[X(u,v)] < opt.

Raghavan & Thompson idea

.]P’[X(u,v) > (1+ 6)0pt] < e=8%0pt/3 |t opt > logn, the RHS is 0(1/n?) for any
constant § > 0, so the chance there exists an edge with greater congestion is 0(1).

Claim: If opt > logn then whp this will find a solution of max congestion < (1 + 0(1)) - opt.
logn
- opt).

For any value of opt, whp this will find a solution of congestion O (log log 1

Proof:

* Let X; (1) be an indicator R.\V. for the event that we use edge (u, v) in the s;-t; path.

* E[X; ww)] = xi cuv), and X1 1), X2 (up), --- are independent for any given (u, v).

* So, we can apply Chernoff-Hoeffding to X, ,,y = X; X (uv), Where IE[X(u,v)] < opt.

Raghavan & Thompson idea

.]P’[X(u,v) > (1+ 6)0pt] < e=8%0pt/3 |t opt > logn, the RHS is 0(1/n?) for any
constant § > 0, so the chance there exists an edge with greater congestion is 0(1).

Claim: If opt > logn then whp this will find a solution of max congestion < (1 + 0(1)) - opt.

For any value of opt, whp this will find a solution of congestion O (101;1go7;n - opt).
Proof:
ek-1\Pt k-1 3lnn
* For any value of opt, can use [P’[X(u,v) >k opt] < (") < et Setk = —— and

get 0(1/n?) as desired.

Randomized Complexity Classes

Introduce RP and BPP, which are randomized versions of complexity class P.

Formally, considering decision (YES/NO) problems. E.g., “does the given graph G have a
perfect matching?”

Definition: An algorithm runs in polynomial time if for some constant ¢, its running time
on instances of size n is 0(n®).

Definition: P is the class of decision problems solvable by deterministic polynomial-time
algorithms.

To define randomized complexity classes, will consider algorithms
A that take in two inputs: an instance I and an auxiliary input vy,
which is a bit string of length polynomial in the size of I. Think of y
y as the random bits used by A.

Randomized Complexity Classes

* Definition: A problem Q is in RP if there exists a polynomial-time algorithm A(/, y) and
a polynomial r such that:

> If [is a YES-instance then P 0,137 [A(I,y) = YES] =
> If [is a NO-instance then P ei0,13701D [A(I,y) = YES] =

RP corresponds to problems solvable by randomized algorithms with 1-sided error.

E.g., we showed Perfect Matching € RP because we gave an algorithm such that if G
has a perfect matching, then the algorithm says YES with probability = % (because the
Tutte polynomial is not identically 0), and if G does not have a perfect matching, then
the algorithm is guaranteed to say NO.

Randomized Complexity Classes

* Definition: A problem Q@ is in BPP if there exists a polynomial-time algorithm A(I, y) and
a polynomial r such that:

> If I'is a YES-instance then P, yram) [A(I,y) = YES] =
> If [is a NO-instance then P 0,130 [A(I,y) = YES] <

W

S

BPP corresponds to randomized algorithms with 2-sided error.

It is believed that P=RP=BPP, but there is no deterministic polynomial-time algorithm
known for the polynomial identity-testing problem.

One more interesting complexity class to mention, P/poly, which is the class of
problems solvable in “non-uniform polynomial time”.

Randomized Complexity Classes

* Definition: A problem Q is in P/poly if there exists a polynomial-time algorithm A(I, y)
and a polynomial r such that for every n there exists a string y,, € {0,1}’”(") such that

A(Ir :VIII) IS aIways correct. There could be 2" inputs of size n, but

Think of y,, as an “advice” string for inputs of size n.

¥y, has size only r(n), so it can’t just
encode all the answers.

Claim: RP € P/poly. (You will show BPP € P/poly on your homework).

Proof: Suppose 0 € RP. So, there exists algo A and polynomial r satisfying RP definition.

* Define A’ that on instance I of size n uses auxiliary input y,, of length (n + 1)r(n) to
perform n + 1 runs of A and output YES if any run gives YES, else NO.

* IP)Yn

’ P)’n

A'(1,y,,) fails] < 1/2n+1,

27’1

exists [of sizens.t. A'(I, y,,) fails] < el % So, a good y,, must exist.

	Slide 1: TTIC 31150/CMSC 31150 Mathematical Toolkit (Fall 2024)
	Slide 2: Recap
	Slide 3: A small extension of Chernoff-Hoeffding bounds
	Slide 4: Low-congestion routing
	Slide 5: Raghavan & Thompson idea
	Slide 6: Raghavan & Thompson idea
	Slide 7: Raghavan & Thompson idea
	Slide 8: Raghavan & Thompson idea
	Slide 9: Raghavan & Thompson idea
	Slide 10: Raghavan & Thompson idea
	Slide 11: Randomized Complexity Classes
	Slide 12: Randomized Complexity Classes
	Slide 13: Randomized Complexity Classes
	Slide 14: Randomized Complexity Classes

